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The mechanism of turbulence development in periodic Klebanoff transition in a
boundary layer has been studied experimentally and in a direct numerical simula-
tion (DNS) with controlled disturbance excitation. In order to compare the results
quantitatively, the flow parameters were matched in both methods, thus providing
complementary data with which the origin of turbulence in the transition process
could be explained. Good agreement was found for the development of the amplitude
and shape of typical disturbance structures, the Λ-vortices, including the development
of ring-like vortices and spikes in the time traces. The origin and the spatial devel-
opment of random velocity perturbations were measured in the experiment, and are
shown together with the evolution of local high-shear layers. Since the DNS is capable
of providing the complete velocity and vorticity fields, further conclusions are drawn
based on the numerical data. The mechanisms involved in the flow randomization pro-
cess are presented in detail. It is shown how the random perturbations which initially
develop at the spike-positions in the outer part of the boundary layer influence the
flow randomization process close to the wall. As an additional effect, the interaction
of vortical structures and high-shear layers of different disturbance periods was found
to be responsible for accelerating the transition to a fully developed turbulent flow.
These interactions lead to a rapid intensification of a high-shear layer very close to
the wall that quickly breaks down because of the modulation it experiences through
interactions with vortex structures from the outer part of the boundary layer. The
final breakdown process will be shown to be dominated by locally appearing vortical
structures and shear layers.

1. Introduction
1.1. General description of the problem

The laminar–turbulent transition process in shear layers has been investigated for
more than a century, and many different concepts for the explanation of the mech-
anisms involved have been developed. In wall-bounded shear layers the type of
transition depends strongly on the character of the external perturbations. As a first
approach, two different classes of transition can be distinguished. The first class
exhibits growth of low-amplitude boundary-layer disturbances according to linear
stability theory, followed by nonlinear interactions of waves and vortices, eventually
leading to a breakdown to turbulence. In the second class, the initial disturbance
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amplitudes are large enough to initiate ‘bypass-transition’, a term introduced by
Morkovin (1969). This paper is devoted to a combined experimental and numerical
study of a type of transition belonging to the first class, the Klebanoff regime. The
Klebanoff regime of transition was chosen because of its comparability with previ-
ous studies, and because of the similar characteristics found in other regimes. Very
similar vortex structures develop from the instability waves in other transition types,
i.e. in the N-regime (Bake, Fernholz & Kachanov 2000) and the oblique transition
(Berlin, Weigel & Henningson 1999), possibly indicating a universal local transition
mechanism.

1.2. The Klebanoff regime

The Klebanoff regime, or K-regime, has been studied in many experimental inves-
tigations beginning with Hama (1959) who was the first to observe the importance
of vortex loops and their induction at the late stages of transition. The generation
of turbulence was observed by Hama above the ‘legs’ and at the upstream part of
the vortex loop. A more detailed investigation of the shape and the characteristics
of the Λ-vortex was performed by Kovasznay, Komoda & Vasudeva (1962). Their
contour plots of the vorticity distribution were reproduced numerically much later
with remarkable similarity by Wray & Hussaini (1984). However, the position of
the ‘spikes’ was not determined correctly by Kovasznay et al. (1962), and it was not
clear whether they could be identified as the first cells of the developing turbulence.
Hama & Nutant (1963) visualized the development of the Λ-vortex by means of the
hydrogen-bubble technique, and these figures were later computed again by Zang &
Hussaini (1987). The resemblance of the two was shown by Kleiser & Zang (1991).
Two important properties of these structures had already been found by Hama &
Nutant (1963): during the roll-up of the tip of the Λ-vortex, an Ω-shaped vortex
(the hairpin vortex of Klebanoff) develops which then detaches and reconnects to a
ring-like vortex. This roll-up, detachment and reconnection was observed up to four
or five times in a cascade. Furthermore, a strong shear layer with a ∆-wing shape was
induced by the vortex legs on the back of the Λ-vortex and eventually broke down.

In the famous experiment of Klebanoff, Tidstrom & Sargent (1962), a vibrating
ribbon – a device that has been in use in transition experiments since Schubauer &
Skramstad (1947) – was used in combination with spanwise periodic spacers to excite
two- and three-dimensional waves under controlled conditions in the boundary layer.
With this work, it became clear that the non linear interaction of waves is a strong
driving force behind the transition to turbulence. They observed the formation of
‘peak’ planes (strong fluctuations) and ‘valley’ planes (weak fluctuations) resulting
in a spanwise modulation of the wavefronts. Vortex structures developed from this
modulation, and the maxima of the fluctuations in the ‘peak’ planes grew rapidly,
leading to the breakdown to turbulence. So-called ‘spikes’ (high-frequency, flash-like
oscilloscope traces) appeared in the ‘peak’ planes, doubling and multiplying further
downstream. At first, these ‘spikes’ were interpreted as secondary instabilities. This
interpretation was apparently incorrect, since the ‘spikes’ are the result of the induced
negative velocity at the centre of ring-like vortices at the tip of a Λ-shaped vortex
structure, as found by Borodulin & Kachanov (1989). Experimental results (Borodulin
& Kachanov 1995), as well as numerical simulations (Rist 1990; Rist & Fasel 1995;
Rist & Kachanov 1995), of flat-plate boundary-layer flows have shown that the
‘spikes’ can be found exactly in the centre of the ring-like vortices and are not a result
of a secondary shear-layer instability.

A very similar sequence of events was found experimentally by Nishioka and
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co-workers for the case of plane Poiseuille flow (see e.g. Nishioka, Asai & Iida
(1980, 1981) and Nishioka & Asai 1984). They also found initial growth of the
Tollmien–Schlichting waves in accordance with linear stability theory, and in later
stages, the typical peak–valley splitting, the formation of characteristic Λ-vortices and
concomitant high-shear layers, as well as the occurrence of spike signals prior to the
very fast final stages of the breakdown process to a turbulent flow. The first signs of
flow randomization were initially observed in the vicinity of the spike signals, as in
the flat-plate boundary-layer case studied here.

The behaviour of the vortical structures due to self-induction was first investigated
by Hama & Nutant (1961). Later, Moin, Leonard & Kim (1986) investigated the
development of a hairpin vortex by means of Biot–Savart calculations, and computed
the evolution of a vortex layer using the Navier–Stokes equations. Both methods
show that a ring-like vortex detaches by self-induction of the vortices and generates a
region of high Reynolds stresses. This behaviour exhibits a strong similarity with the
‘typical eddies’ shown by Falco (1977) by means of smoke visualization in the outer
region of a turbulent boundary layer.

The hypothesis of Theodorsen (1952), stating that the hairpin or horseshoe vor-
tices play a key role in the production process of turbulence, has motivated many
researchers to investigate these structures in detail. Some, like Head & Bandyopad-
hyay (1981), tried to find them directly in the turbulent boundary layer. Others,
like Acalar & Smith (1987a, b) and Haidari & Smith (1994), investigated artificially
excited hairpin vortices (by local injection or half-spheres). The latter showed that a
single hairpin vortex can decay without producing turbulence. But in the case where
a hairpin vortex stimulates the generation of secondary vortices, the whole structure
grows and spreads in the boundary layer.

Under controlled disturbance conditions, the flow in this regime remains determinis-
tic (periodic) until a rather late stage of the transition process. The present knowledge
about the transition process in the K-regime can be summarized as follows (for an
extended overview see Kachanov 1994):

(a) growth of the three-dimensional instability modes at the fundamental (f = f1)
and zero frequencies (mean flow deformation);

(b) formation of periodic streamwise vortices and growth of a spanwise modula-
tion of the mean velocity and the disturbance amplitudes (and phases) leading to
the formation of ‘peaks’ and ‘valleys’ in the spanwise distributions, with very high
amplitudes of the perturbations at the peak positions;

(c) formation of Λ-structures (at each period of the fundamental wave) aligned
in rows consisting mainly of a continuously deforming vortex loop (Λ-vortex) and a
three-dimensional (∆- or Λ-shaped) high-shear layer;

(d ) continuous stretching of the Λ-structures and concentration of the vorticity in
the ‘legs’ of the Λ-vortices and in the high-shear layers that occur together with these
vortices in the boundary layer;

(e) rapid (but not explosive) growth of the 3-D high-frequency spectral modes;
( f ) multiple reconnection of the Λ-vortex ‘legs’ near the tip and formation of ring-

like vortices (through an intermediate stage of the Ω-vortices, also known as hairpin
vortices);

(g) appearance of very intensive flashes in the streamwise-velocity time traces at
the centre of the ring-like vortices, called ‘spikes’, which occur in increasing number
in downstream direction;

(h) growth of quasi-random, non-periodic perturbations observed in the near-wall
region in the vicinity of the peak position.
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Figure 1. The laminar wind tunnel at the HFI.

The early stages of the transition process, including the stages of wave growth
according to primary and secondary instability theory, as well as the initial formation
of the Λ-structures, are basically understood. The late stages of the transition process
which we study here, as represented by (e)–(h) in the list given above, are not
quite so well understood as the earlier ones. In particular, the mechanism of flow
randomization, and the final breakdown of the vortex structures in this scenario,
have not been fully explained yet. One of the goals of the present work is to shed
some light on this problem. New details of the development of random perturbations
in the three-dimensional vortex structures of the K-regime will be presented. The
experimental results in the K-regime will be compared in detail with a DNS which
was specifically set up to reproduce the experimental mean flow and disturbance
excitation conditions as closely as possible.

2. Experimental methods
2.1. Wind tunnel

The experiments were performed in the laminar wind tunnel of the Hermann-
Föttinger-Institute of the Berlin Technical University (figure 1). It is a closed-circuit
tunnel with an axisymmetric test section made of Plexiglas tubes of various lengths
with an inner diameter of 0.44 m and a total length of 6 m. It has a centrifugal fan
and an additional blower to blow out the nozzle boundary layer at the entry of the
test section. In order to reduce the noise level in the wind tunnel, various sound
attenuation devices are installed. In the settling chamber, a non-woven filter mat and
a single, precisely manufactured, perforated metal plate (64% open area ratio) are
inserted to reduce mean flow non-uniformities. The settling chamber is followed by a



Turbulence mechanism in Klebanoff transition 221

Integration domain

U∞

U∞ = 7.5 m s–1

f1 = 62.5 Hz
v = 1.5 × 10–5 m2 s–1

DS

Region of measurements

δ(x)

Hot wire

Re
δ1(DS) = 730

0 484 550 640 740 780 820 860
x (mm)

Hot-wire anemometer

Phase-locked
ensemble averaged

time series

Trigger signalExcitation
system

z

x

vwall

Instantaneous disturbance excitation
in the DNS

Excitation and measurement technique
in the experiment

Figure 2. Sketch of the integration domain, the measurement region, and the excitation system in
the experiment and the DNS.

2 m long axisymmetric nozzle with an 18 : 1 contraction ratio. The free-stream turbu-
lence level was Tu∞ = 0.04% in the frequency range between 0.1 and 1000 Hz at a
free-stream velocity U∞ = 7.5 m s−1. In the laminar boundary layer, a maximum level
of around u′/U∞ = 0.12% was found within a profile typical of the Klebanoff mode.
The main content of disturbances was found in the spectrum below 5 Hz, resulting
from low-frequency volume fluctuations in the wind tunnel. The flow temperature can
be controlled with a water cooler to within ±0.05 ◦C. For a further description of the
flow quality, see Fernholz & Warnack (1998).

The boundary layer under investigation starts at the elliptic leading edge of the
axisymmetric test section of the wind tunnel and develops downstream on its inner
wall. Because of the axisymmetric shape of the test section, no corner-flow effects can
occur. Spanwise curvature effects were neglected because the ratio of the boundary-
layer thickness δ99% at the position of the excitation source to the radius of the test-
section r was about 0.03. The coordinate system is defined with x in the streamwise
direction starting at the leading edge, y is the wall-normal distance, and z is the
spanwise direction along the circumference of the wall of the test section, and is
defined as zero on the symmetry line of the excited disturbance at the position of the
excitation source.

2.2. Methods of measurement

All measurements in the flow were conducted with a constant-temperature hot-wire
anemometer (AA-Lab AN-1003). The streamwise velocity component was measured
with a gold-plated tungsten/platinum hot wire with a diameter of 2.5µm and an
effective length of 0.55 mm. It was mounted on an electrically driven xy-traverse and
was calibrated against a Prandtl tube in the free stream.

A sketch of the disturbance excitation and the data acquisition system is shown in
figure 2. The hot-wire signal was sampled together with a trigger signal generated by
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the excitation system. The sample rate was chosen to obtain at least 64 samples in
each period of a wave with the fundamental excitation frequency of f1 = 62.5 Hz. A
typical measurement in a (y, z)-plane with a grid of ny × nz = 38 × 23 = 876 points
took three hours of total measuring time.

After the transfer of the data to a work-station, the trigger signal was extracted
from the time series and the data were processed to obtain the statistics and the
phase-locked ensemble averaged time series. The trigger signal was a short square-
wave impulse generated with half the fundamental, i.e. the subharmonic frequency. It
allowed us to split the measured signal into its periodic and non-periodic parts.

Klebanoff excited transition with a vibrating ribbon. In order to control the desired
spanwise periodicity, he placed spacers of scotch tape on the wall below the ribbon.
The disadvantage of this method is that a slight difference in position and height
of the tape causes significant changes in the flow, and many test measurements
are necessary to obtain the desired result (amplitude, symmetry). With a slit source
connected to loudspeakers, the frequency, amplitude, phase and spanwise wavenumber
of the excited wave can be varied continuously, by feeding different signals to the
loudspeakers. In the present case, the source excited a quasi-two-dimensional harmonic
instability wave with the frequency f1 = 62.5 Hz (F1 = 2πf1ν/U

2∞ = 105× 10−6 with
the kinematic viscosity ν = 1.5× 10−5 m2 s−1) that had a spanwise modulation of its
amplitude and phase. This leads to the well-known Klebanoff regime characterized by
a spanwise-modulated high-amplitude fundamental wave followed by the formation
of a peak and valley structure, aligned Λ-vortices, and typical ‘spikes’ appearing in
the oscilloscope traces.

The excitation signals were generated by a PC, fed into a 16 channel DA-converter
and led to an array of calibrated power amplifiers. The instability waves were
introduced into the boundary layer by means of a spanwise slit with a width of
0.8 mm, a length of 260 mm (19% of total circumference (1387 mm) of the test
section) and a depth of 5.0 mm. The slit was cut into the wall of a special ring-like
part of the test section. A set of 32 specially shaped metal pipes (with a spacing of
8 mm each) was positioned along the slit. Outside the wind tunnel the pipes were
connected to the loudspeakers by an array of plastic tubes. The ring with the slit
generator was inserted between two other segments of the test section and could be
rotated in order to change the spanwise position of the source relative to the hot-wire
probe mounted on an xy-traverse. Inside the slit source, the signals were produced
by the different loudspeakers and superimposed in the flow near the outlet to form a
two- or three-dimensional disturbance field of volume fluctuations of the fluid.

The trigger signal, recorded together with the hot-wire data, enabled us to split the
total velocity into the mean velocity ū, the ensemble-averaged periodically fluctuating
velocity u′p and the (random) deviation u′r from the average periodic signal according to

U(x, y, z, t) = ū(x, y, z) + u′p(x, y, z, t) + u′r(x, y, z, t), (2.1)

where

ū(x, y, z) =
1

N

N∑
i=1

U(x, y, z, ti), ti = (i− 1)∆t (2.2)

and

u′p(x, y, z, t) =
1

NP

NP∑
k=1

u′(x, y, z, tk), tk = (k − 1)T + t (2.3)

(N: total number of samples for all periods, NP : total number of periods, ∆t: sam-
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pling interval, T : time of one fundamental period). Here, U is the total velocity and
u′ the total disturbance with respect to the time-averaged flow ū, and u′r is the random
part of the perturbation, defined as the deviation of the instantaneous time signal
from the periodic part of the flow ū + u′p, computed according to (2.1). It can be
averaged again for each phase angle of the excited disturbance in order to calculate
an r.m.s.-value. It cannot be separated into spatial and temporal fluctuations because
the measurements were performed with a single hot wire. However, it can be regarded
as a measure of the development of stochastic turbulence in the transition process.

The Fourier coefficients of the velocity fluctuations at a fixed x-position are com-
puted using the periodic ensemble-averaged part of the velocity fluctuation only:

Ah(y, z) =

hmax∑
h=1

u′p(y, z, τ)e
−ihωτ, (2.4)

with h being the frequency index, and h = 1 denoting the fundamental frequency.
The procedure for decomposing a spatial wave packet into a fan of three-

dimensional oblique waves in the experiment was similar to that used by Gilyov,
Kachanov & Kozlov (1983), and is described in more detail by Kachanov & Michalke
(1994). After the temporal Fourier transformation of the periodic velocity fluctuations
u′p the spanwise wavenumber spectra Bh,k were calculated using

Bh,k(y) =

kmax∑
k=0

Up(y, z)e
−ikγz for h = 0, (2.5)

describing the stationary disturbances, with Up being the mean flow deformation, and
k being the spanwise wavenumber index. For the unsteady disturbances,

Bh,k(y) =

kmax∑
k=0

Ah(y, z)e
−ikγz for h = 1, 2, 3, ... (2.6)

is used with γ = 2π/λz being the spanwise wavenumber (λz is given by the width of
the domain in the spanwise direction).

3. Numerical methods
The details of the DNS method used here, along with its continuing development,

have been described in Fasel, Rist & Konzelmann (1990), Kloker, Konzelmann &
Fasel (1993), Rist & Fasel (1995) and Kloker (1998). Therefore, only a short overview
will be given.

The numerical method is based on a velocity–vorticity formulation of the Navier–
Stokes equations for an incompressible fluid. The so-called spatial model is applied,
where all three spatial dimensions and time are discretized without any modelling
assumptions. For the present simulation, the flow is split into a steady two-dimensional
baseflow and an unsteady three-dimensional disturbance flow. The baseflow has to
be calculated separately before the equations for the disturbance flow field can be
solved. In this model the nonlinear baseflow deformation is obtained as the temporal
mean of the fluctuating disturbance quantities at any given point in the flow field.

Since the flow is considered to be periodic in the spanwise direction, a Fourier
ansatz in this direction is used, and the equations and boundary conditions are
transformed accordingly. The nonlinear terms are solved using a pseudo-spectral
technique introduced by Orszag (1971) which ensures an aliasing-free computation of
all spanwise modes.
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Figure 3. Development of the displacement thickness δ1 in comparison with the theoretical
Blasius curve, and with the Blasius curve shifted by ∆x = 190 mm.

High-order compact finite differences are used for discretization of the wall-normal
and the downstream direction on an equidistant grid. At the wall, a zone with a
refined mesh (half the step size in the wall-normal direction) is used in order to
ensure sufficient resolution for the dynamics of the flow close to the wall at the
very late stages of the transition process (see figure 6 at x = 860 mm). Explicit time
integration is performed by a standard Runge–Kutta scheme of fourth-order accuracy.
A scheme of alternating high-order up- and downwind compact finite differences is
used in subsequent Runge–Kutta substeps for computation of the derivatives of the
nonlinear terms. This method leads to a finite difference scheme with essentially
the characteristics of a central scheme, but, in addition, provides the right amount
of numerical damping (small enough to allow for the correct computation of the
instabilities involved but also large enough to stabilize the numerical method).

The disturbances in the DNS are generated by suction and blowing within a
disturbance strip at the wall (see figure 2). The wall-normal velocity component is
defined by

vwall(x, z) = [A2−D + A3−D f(z)] g(x) sin(ωt), (3.1)

where A2−D and A3−D are the disturbance amplitudes, with g(x) and f(z) being
functions which assure zero net mass flux into the integration domain at any time.
Additionally, f(z) represents the wave modulation in the spanwise direction and is
chosen to create an initial disturbance spectrum in the spanwise direction that is as
close to the experiment as possible.

In a buffer domain at the outflow boundary, the disturbance vorticity vector is
forced to zero over a short range in the downstream direction. This damping process
does not lead to any significant upstream influence either in the vorticity or the
velocity field. The vanishing vorticity leads to an exponential decay of all velocity
components. At the end of the buffer domain, the velocity disturbances are reduced
by several orders of magnitude. The details of the implementation of the outflow
boundary condition are only of minor relevance in this case.

The method has been extensively verified (checked for consistent discretization and
convergence) and validated (compared with linear stability theory and experimental
data) and has proven to be a useful research tool. For further details, the reader is
referred to the references given above.

4. Matching of DNS and experiment
A sketch of the setup of the boundary-layer flow studied showing the numerical

integration domain and the measurement region is given in figure 2. All downstream
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Figure 4. Initial conditions for the K-regime. Wall-normal and spanwise amplitude profiles at
x = 640 mm for the fundamental frequency. Experiment (symbols) vs. DNS (lines).

positions are given in experimental coordinates, as a convenient scaling is not available
over the full range of the transition process from laminar to turbulent flow. The
virtual leading edge of the undisturbed Blasius baseflow is located at ∆x = 190 mm
downstream of the physical leading edge of the channel (figure 3). The disturbance
strip is located at Reδ1 = 730, which corresponds to a position of x = 550 mm relative
to the physical leading edge. The positions chosen for comparison of the results are
also given in figure 2.

The amplitudes of the Tollmien–Schlichting (TS) waves had to be quite large
from the very beginning in order to trigger the transition within a short distance
downstream of the disturbance source and to reach at least a four-spike stage within
the measurement region. Therefore, nonlinear wave interactions are already important
at the first data acquisition point in the experiment. Since this point at x = 640 mm
is located about two TS-wavelengths (λTS ≈ 43 mm, αTS ≈ 0.146 mm−1) downstream
of the disturbance source, iterative adjustments of the disturbance amplitudes at
the disturbance strip in the DNS were necessary in order to obtain good overall
agreement with the experiment – not only for the urms-profiles in the wall-normal and
spanwise directions at the first measurement position (see figure 4), but also for the
development of the disturbance amplitudes over the whole transition process (see
figure 8). Figure 4 also shows the relative amplitudes of the two-dimensional wave
and the spanwise modulation 90 mm downstream of the disturbance source, i.e. we
have approximately a two-dimensional TS-wave of 1.5%, and a three-dimensional
modulation that leads to a total amplitude of about 4.5% for the fundamental
frequency at the first measurement position.

When exciting the Klebanoff regime, the question arises of how to choose the
spanwise periodicity of the peak positions. A direct numerical simulation of Meyer,
Rist & Wagner (1998) showed that increasing the spanwise spacing of the vortices
delays transition slightly. However, the qualitative nature of the transition process
close to the peak plane, including the formation of Λ-vortices, high-shear layers, and
their subsequent breakdown, remains unchanged. In early experiments the problem
occurred that an overlap of spanwise-distributed vortical structures made it difficult
to distinguish the production process of higher-order structures and their breakdown
to turbulence. Therefore, a spanwise spacing of the peak-positions of λz EXP = 96 mm
(γEXP = 0.065 mm−1) has been chosen where the Λ-vortices did not interact within
the measurement region. Only the central peak position is considered in the further
description of the results. In the DNS a spanwise period of λz DNS = 80 mm (γDNS =
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Size of the integration domain in mm (∆X × ∆Y × ∆Z) 541.53× 18.48× 80.00
Number of grid points (nx × ny) 2266× 361
Number of Fourier modes (de-aliased) 154
Total number of unknowns ≈ 125× 106

Number of grid points per wavelength in spanwise direction
(for computation of the nonlinear terms) 512
Number of grid points within the wall-zone 33
Numerical resolution in mm (∆x× ∆y (wall-zone)× ∆z) 0.2391× 0.0537(0.0269)× 0.2614
Numerical resolution in wall units at x = 900 mm ≈ 7.2× 0.8× 7.8
(∆x+ × ∆y+ × ∆z+)
Numerical time step ∆t (s) 1.067× 10−5

Number of disturbed Fourier modes 21

Table 1. Parameters of the simulation.

0.078 mm−1) was found to be sufficient to separate the adjacent Λ-vortices without
any significant interaction inside the integration domain.†

A further advantage of the localized disturbance generation in the spanwise direc-
tion is the additional possibility of studying the spreading of the transition process in
the spanwise direction. It was found in simulations that it makes a difference whether
the spanwise modulation of the 2-D TS-wave is realized as a steady baseflow de-
formation or as an unsteady oscillation with the fundamental disturbance frequency.
The steady baseflow deformation, as used in Meyer et al. (1998), seems to favour a
faster spreading of the vortical structures in the spanwise direction. As the current
experiment used the unsteady disturbance generation method, we used this method
in the DNS as well in order to obtain comparable results.

An omnipresent problem when trying to match the DNS with the experimental
results is the sensitivity of the late-stage boundary layer flow to small random
background perturbations which are always present under real conditions. It is very
difficult to choose the correct initial disturbance amplitudes in the DNS because
it is almost impossible to determine whether a given development is caused by a
fixed initial amplitude level without additional background perturbations, or by the
influence of the background that can lead to a similar development when using a
slightly lower amplitude level than in the first case. The random nature of the small-
amplitude background makes it very hard to model its influence adequately in the
DNS. This uncertainty in the initial conditions leads to a decreasing agreement of the
unsteady velocity profiles between experimental and numerical data far downstream
in the nonlinear transition process. The exact background spectrum of the DNS is
unknown too, because a large number of simulation periods would be needed in order
to obtain a converged statistic, which is impractical because of high computational
costs. But in general, when no artificial noise is introduced in the simulation, the
background noise level is several orders of magnitude less than in the experiment.
Despite all these unknowns, the agreement of the averaged profiles achievable is
very good over the full range of the transition process, and the development of the
dominant unsteady structures is also found to agree very well.

† The main reason for the different spanwise wavenumbers is that some measurements were
performed even further downstream than intended for comparison with the DNS. Therefore, the
width of the integration domain in the DNS could be chosen smaller without any significant vortical
interactions taking place. For comparing the modal behaviour, data from the same spanwise range
were analysed in both experiment and DNS.
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The parameters of the simulation are given in table 1. The numerical results have
been checked by grid refinement tests with even higher resolution and by comparison
with the experimental results. The wall-normal direction turned out to be the critical
one in terms of the resolution requirements.

5. Comparison of the results
5.1. Mean-flow characteristics

For the undisturbed flow, the mean-velocity profiles in the range of the measurements
are very close to the Blasius profile, i.e. the zero-pressure-gradient boundary-layer flow.
The experimentally determined shape factor H12 is in general lower (max. −3.5%)
than the theoretical value H12 = 2.59 because of the slight favourable pressure
gradient due to the boundary-layer growth in the axisymmetric test section. The value
of H32 is only slightly higher (max. 1.3%) than the theoretical value H32 = 1.57. The
development of the displacement thickness is shown in figure 3.

For the disturbed flow, a deviation of the mean profile from the theoretical Blasius
value can already be observed at x = 740 mm in the peak plane, i.e. along the centreline
of the maximum excitation (see figure 5). The shape factor goes continuously down
to a value of H12 = 1.77 at x = 860 mm with a profile displaying an inflection point.
The comparison of the experimental results with the DNS data shows very good
agreement for the shape-factors and the integrated boundary-layer thicknesses.

For a better quantitative understanding of the transitional flow, normal-to-wall
profiles of the mean and fluctuation velocities of the disturbed boundary layer are
shown in figure 6. The deformed mean-velocity profiles along the peak plane in
experiment and DNS compare well over the whole range of the transition process. In
contrast to the peak plane, almost no deformation of the mean-velocity profile can
be observed in the valley region at z = ±24 mm in both the experiment and the DNS
(not shown).
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Figure 6. Mean velocity (—–) and fluctuation (– – –) profiles normalized with U∞ at z = 0 mm and
four different x-positions (x = 740, 780, 820, 860 mm). Experiment (4, urms; �, U) vs. DNS (lines).

5.2. Disturbance characteristics and structure

The profile of the fluctuation velocity u′ at the first x-position in figure 6 shows
a strong maximum near the outer edge of the boundary layer (u′max = 14%). At
this position, the first well-developed spike was observed in the velocity time traces.
The quantitative agreement of the fluctuation velocity profiles between DNS and
experiment is decreasing with increasing x-position, but the qualitative shape remains
similar. The reasons for this increasing deviation have already been discussed in § 4.

A comparison between experiment and DNS at four x-positions in (y, z, t) spaces
is shown in figure 7. It documents the development of the velocity disturbances in
the K-regime. Plotted are iso-surfaces of the periodic streamwise velocity fluctuation
u′p for two fundamental periods in time. Dark iso-surfaces represent negative velocity
fluctuations (−8%), whereas light iso-surfaces represent positive velocity fluctuations
(+8%). The disturbance structures develop almost identically in the experiment and
in the simulation. Starting from a Λ-shape inclined to the wall, the development of
secondary side structures and spikes can be observed. The dark spots at the tip of
the structures correspond to strong negative velocity fluctuations, i.e. the spikes in
the time traces. The number and position of the spikes agree well. Possible reasons
for the slightly decreasing agreement at further downstream positions were already
discussed in § 4.

The results from a computation of the frequency–wavenumber spectra, as described
in § 2, are shown in figure 8. Plotted are the maxima of the modes in the wall-normal
profile, lines for the simulation and symbols for the experiment. The disturbance
generation of the DNS is adjusted to match the spanwise and wall-normal distribution
of the amplitude of the fundamental frequency found in the experiment at the
first measurement position (x = 640 mm) as closely as possible. As a result, the
fundamental modes in figure 8 coincide very well. Additionally, the stationary modes,
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Figure 7. Iso-surfaces of the streamwise velocity fluctuation u′p (light: +8%, dark: −8%) at four
consecutive x-positions (x = 740, 780, 820, 860 mm). (a) Experiment vs. (b) DNS.

as well as the higher harmonic modes, show a good quantitative agreement in their
development, despite the very strong nonlinear flow evolution. In figure 8, only
waves with very high amplitudes are shown. The complete spectrum contains, of
course, a lot more waves. They are generated by the input of a high-amplitude
two-dimensional wave plus a number of oblique waves. Additionally, the strong
nonlinearities, occurring from the very beginning of the flow development right at the
disturbance strip, lead to a rapid filling of the frequency–wavenumber spectrum.
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6. Turbulence development
Up to this point we have shown that the agreement between experiment and

DNS for the current transitional boundary layer flow is very good. Now we will use
the data to gain insight into the mechanism of flow randomization. Since turbulent
flow is by definition connected with random fluctuations with respect to the time-
averaged flow, the question arises of where these random fluctuations occur first in
the otherwise periodically disturbed flow, and how they are amplified. Obviously,
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there must be a connection between the instability mechanisms inherent in the flow
and the – in real flow situations always present – small-amplitude random background
disturbances. In the following section we try to shed some light on the development
of these initial random perturbations which finally lead to a fully turbulent flow.
We do not claim to explain the generation of the turbulent flow itself but only the
amplification mechanism of the initial random fluctuations in the complex, unsteady
and three-dimensional transitional flow.
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6.1. Turbulence development in periodic Λ-structures

In figure 9, experimental data are used to show the development of the periodic fluctu-
ations u′p side by side with r.m.s.-values of the random perturbations u′r . Upstream of
the first x-position shown here, no significant random perturbations can be observed,
and the flow is purely periodic. The first measurable sign of randomness can be
observed at a position corresponding to the tip of the Λ-shaped disturbance structure
at x = 740 mm. At the second x-position, two distinguishable spots of randomness
appear at the same location as the dark spots of negative velocity fluctuation, i.e. the
spikes in the velocity time traces. The first random velocity fluctuations are identified
as phase jitter and amplitude modulations of the ring-like vortex structures at the tip
of the Λ-structure in the outer part of the boundary layer. The phase jitter and ampli-
tude modulations can be seen in all non-averaged time traces of periodic transition.
From period to period there are visible differences in the amplitude of the spike events
and in their temporal separation in the outer part of the boundary layer. Differing
temporal separations of the spike events in an initially periodic scenario correspond
to a slight spatial displacement of the ring-like vortices which generate the spike
signals (see e.g. the time traces in Bake et al. 2000, figure 15). At the third and fourth
x-positions (multiple spikes) in figure 9, a rapid filling of the flow field with random
fluctuations towards the wall, and then in spanwise direction, can be observed. The
early randomization is very localized in space and time, and spreads from the region
of the spikes to the surrounding fluid and to the wall. When plotting the random
fluctuations from DNS data, the amplitude level at which these fluctuations occur is
much lower (about two orders of magnitude in a simulation without introducing addi-
tional background noise), and the transition process, as measured by the downstream
development of the shape factors, is somewhat delayed compared to the experiment.
Nevertheless, the non-periodic fluctuations occur at the same locations within the
boundary layer in DNS and experiment. When an additional very low-amplitude ran-
dom background is introduced in the simulation, e.g. by random suction and blowing
with very low amplitude at the disturbance strip, the non-periodic fluctuations in the
DNS reach the level of the experiment, and only then is the transition process as fast
as observed in the experiment.

A cut through the experimental data of figure 9 in the peak plane at z = 0 mm
is shown in figure 10. Here, the random fluctuations u′r are plotted in grey scale
together with positive values of the periodic part of the wall-normal velocity gradient
∂U/∂y plotted as contour lines. In boundary layers this gradient is almost equal
to the spanwise vorticity Ωz since ∂V/∂x is not contributing much (see e.g. Rist &
Fasel 1995). The figure illustrates the relative position of the non-periodic fluctuations
(grey shades) and the high-shear layers (contour lines) that occur as satellites of the
dominant vortical structures in the boundary layer. At first, the strongest random
fluctuations can again be observed at the position of the spikes close to the kink of the
inclined high-shear layer which coincides with the tip of the Λ-vortex in the outer part
of the boundary layer. At only a short distance downstream non-periodic motions
also occur close to the wall in the region of strong mean velocity gradients where they
are strongly amplified in the following development. The flow structures in (y, t)-space
in figure 10 which show the breakdown of a high-shear layer are similar to the ones
shown in Lu & Smith (1991) where the bursting phenomenon in turbulent boundary
layers was investigated. The structures in that paper were not as organized as in the
controlled transition process studied here, but nevertheless the local generation of
turbulence in the presence of strong velocity gradients near the wall might be of a
similar nature.
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The flow randomization process can be understood by taking into account the
development of the vortical structures in the transitional boundary layer. A vortex
identification method introduced by Jeong & Hussain (1995) is applied, which finds
vortex cores by locating the inflection points of the pressure in a plane perpendicular
to the vortex axis. The pressure inflection points surround the pressure minimum that
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Figure 11. Vortex visualization using instantaneous data from the DNS at five time moments
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occurs in the vicinity of the vortex core. The method is used for the visualization
of the development of the coherent vortical motion as shown in figure 11. The data
for figure 11 are taken from the DNS, and show the development of the Ω- or
ring-like vortices at the tip of Λ-structures together with the formation of secondary
structures at positions further away from the peak plane (z = 0 mm) at five instants
in a fundamental period. Many symmetric, as well as asymmetric, structures develop
during the late transition process. At the tip of the Λ-vortex (figure 11a, x ≈ 730 mm),
we find a strong upward movement of fluid between the legs of the vortex due to
induction by their counter-rotation. This transport of low-speed fluid away from the
wall generates a high-shear layer above the legs of the vortex. At the end of the
Λ-vortex between its legs (figure 11d, x ≈ 740 mm), we find a rather weak movement
of fluid towards the wall that slightly increases the wall shear stress. The high-shear
layer generated by the vortical structure is located on top of the Λ-structure at its tip
upstream of the latest loop and merges with the wall shear layer at its end.

From figure 11(c) the Λ-structure can be seen at two different stages of its devel-
opment. From x = 720 mm to x = 755 mm we find the typical Λ-shape of the legs
of the vortex, close together at the tip and wider apart at the tail. When looking
at the structure generated one period earlier (from x = 790 mm to x = 825 mm)
we see that the legs are now almost parallel. The length of the structure from tip
(first ring-like vortex) to tail is basically unchanged (≈ 35 mm). In order to see what
consequences this has for the high-shear layer generated by the vortex we should
compare figure 11(c) with figure 12(c). Figure 12 shows cuts through the high-shear
layers, represented by the vorticity component Ωz , in the peak plane (z = 0 mm)
at time moments corresponding to the ones shown in figure 11. In figure 12(c)
the region of very high shear for the first Λ-vortex lies approximately in the range
745 mm < x < 760 mm, whereas for the Λ-vortex generated one period earlier the
high-shear layer (HSL) lies in the range 795 mm < x < 825 mm, i.e. the latter HSL
is about twice as long as the first one. The growth of the shear layer can easily be
explained when we recognize that the HSL is a consequence of the presence of the
Λ-vortex in the boundary layer. The HSL is produced by the induction effect of the
rotating legs of the Λ-vortex. The legs transfer low-speed fluid away from the wall
on the inner side of the Λ-vortex and high-speed fluid towards the wall on the outer
side of the Λ-vortex. The effectiveness of momentum transport by fluid induction is
restricted to a rather short range, thus the high shear is generated only in the direct
vicinity of the rotating legs. Consequently, the strongest shear is generated when
the rotating legs are very close together, because then the induction of both legs is
superposed. The close-to-wall HSL generated at the tail of the Λ-vortex will play a
role at the final breakdown process when the structures generated in different periods
start to interact.

In figure 11, we can observe ring-like vortices which evolve continuously at the
tip of the Λ-structures. Despite the durability of the ring-like vortices in the outer
part of the boundary layer, their initial formation seems to be very sensitive to
small perturbations, and their streamwise separation with respect to each other varies
slightly from period to period. The ‘bridges’ that are generated between the legs of
the Λ-vortex, out of which the ring-like vortices emerge, must be created by a viscous
process because vortex lines are reconnected at this stage of the development which
cannot be explained by a purely inviscid mechanism. The subsequent detachment of
the vortex loops from the tip of the Λ-vortex is a predominantly inviscid process,
basically due to self-induction of the deformed vortex line moving in the mean shear,
as suggested in the work of Moin et al. (1986). We do not think that the HSL
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Figure 12. Total spanwise vorticity Ωz in the peak-plane at z = 0 mm and at five time moments corresponding to figure 11 (DNS data).
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on top of the Λ-vortex simply rolls up into the hairpin vortex (implying that any
random disturbances amplified by the HSL will be transfered to ring-like vortices).
This concept is based on the observation that the HSL usually ends at the newest ring
that is developing at the tip of the Λ-vortex (as it can be observed when looking at
the plot of the spanwise vorticity component in figure 12). Between any two ring-like
vortices that were originally generated at the tip of the Λ-vortex and already have left
the tip, there is only a relatively weak shear layer visible. But this is not necessarily
due to the fact that the HSL ‘rolls up’ into the currently developing ring and therefore
disappears, but rather we observe that it starts to disappear (or becomes extremely
weak) at the same moment when the strongly rotating legs which connect the two
latest vortex loops start moving towards the wall. Instead of pumping low-speed fluid
into a region of predominantly high-speed fluid, which would generate a HSL, they
propel themselves towards the wall. A strong shear layer is only generated by the
swirling motion of a fluid vortex if the rotating vortex is not moving in a direction
normal to the axis of the vortex. Here, this would mean that the vortex must stay at
about a constant height in the boundary layer in order to generate a HSL (as is the
case at the tip of the Λ-vortex but not for the legs connecting the different rings). In
our opinion the HSL on top of the Λ-vortex does not disappear because it transforms
into a ring-like vortex but rather because it is no longer generated by the vortical
motion downstream of the tip of the Λ-vortex. The HSL disappears as soon as the
legs connecting the ring-like vortex with the tip of the Λ-vortex start moving towards
the wall. We want to point out that the nonlinear breakdown process to turbulence is
not caused by a mere inflectional instability of the HSL on top of the Λ-vortex, even
if the shear layer visualization in figure 12 might suggest this, but is a much more
complicated process involving several different mechanisms. The initial HSL located
on top of the Λ-vortex does not seem to be the most important structure for the flow
randomization process as we will try to show below.

Our detailed knowledge about the mechanisms which generate the side structures
visible in figure 11 is still limited, but possible explanations are discussed in Smith et al.
(1991) and Smith & Walker (1997) where the generation, development and interaction
of hairpin vortices in a turbulent boundary layer was studied. The processes of vortex
generation and interaction occurring there are very similar to the ones studied
here. Another investigation concerned with the turbulence production mechanism by
hairpin vortices was performed by Asai & Nishioka (1995). The authors suggested an
inflectional instability of the 3-D wall shear layer lifted up by the longitudinal vortex
legs as a possible explanation for the growth of the near-wall vortical structures.

Downstream of x ≈ 820 mm, we found the typical turbulent velocity profile nor-
malized in wall coordinates with a buffer region, a log layer and a wake region, but
still with a considerable dependence of the friction velocity on the downstream and
spanwise position (not shown here). Visual inspection of figure 11 seems to support
the findings reported by Robinson (1991) that the buffer region very close to the
wall is dominated by quasi-streamwise vortices which generate the typical low- and
high-speed streaks appearing later in the fully turbulent boundary layer, whereas
the wake region in the outer part of the boundary layer is dominated by transverse
vortices and vortical arches (mainly the ring-like vortices in the flow studied here).
The log region in between is dominated by the presence of both types of organized
vortical structures, streamwise as well as transverse.

The flow randomization process can be summarized as follows:
(a) The first random fluctuations are observed in the experiment at the tip of the

Λ-vortex, where the ring-like vortices are formed. They, in turn, generate the spike
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signals in the time traces by induction. This formation process is very sensitive to
background perturbations, as mentioned by Borodulin et al. (1999), and also observed
in turbulent channel flow by Zhou et al. (1999). The exact reason why the formation
is sensitive to background perturbations still needs further investigation. Possible
options are: (i) an instability of the almost parallel vortices at the tip of the Λ-vortex
(Crow instability), (ii) an influence of the HSL on top of the Λ-vortex (strong local
velocity gradients close to the reconnection region) or (iii) a sensitivity of the inviscid
self-induction process to small disturbances. The reconnection process is accompanied
by strong vortex stretching when the developing Ω-vortex lifts up in the boundary
layer and is therefore accelerated. The stretching leads to increased fluid induction,
and, therefore, to a region of extremely high shear slightly above the stretched vortex
legs. This shear layer disappears when the Ω-vortex detaches from the tip of the
Λ-vortex and the legs still connecting it with the tip of the Λ start moving towards
the wall. The sensitivity of the process of formation of the ring-like vortices to small
random background perturbations is responsible for a slightly varying occurrence of
the ring-like vortices in space and time from one period to another. These variations
are perceived in the experiment as phase jitter and small-amplitude variations of the
spike signals, as already discussed at the beginning of § 6.1. Since the fluid region
around the ring-like vortices is a region of strong local velocity gradients, the small-
amplitude background perturbations will be amplified at these locations. Therefore,
the amplified random motions will still be connected to the periodically occurring
events in the flow, i.e. they will be strongest in regions where the local flow structures
generate the largest gradients; they are no longer completely independent background
perturbations. Related investigations were performed by Nishioka (1994) for the case
of plane Poiseuille flow. He investigated the influence of the background perturbations
on the flow randomization process through the secondary instability. It was found
that the non-periodic motions which are represented by the continuous part of the
spectrum are connected with the periodic events in the boundary layer and are not
completely random fluctuations.

(b) Once formed, the ring-like vortices have a strong effect on the surrounding
fluid, especially down to the region close to the wall as already presented by Meyer et
al. (1999). Positive velocity fluctuations are observed in a plane z ≈ ±2 mm that move
with the same speed as the ring-like vortices but are much closer to the wall. This
influence can also be clearly observed in animations of ∂U/∂y at the wall produced
from DNS data. The modulation patterns of the wall values can be clearly attributed
to the ring-like vortices in the outer part of the boundary layer. They move with
the same velocity as the ring-like vortices themselves, which is almost the free-stream
speed. This way, the random motion in the outer part of the boundary layer has an
influence on the region close to the wall where strong mean velocity gradients occur
and the non-periodic fluctuations are amplified. For this amplification, one mechanism
was proposed by Dryganets et al. (1990). They found a detuned subharmonic-type
resonant interaction responsible for the amplification of random disturbances in the
presence of a deterministic fundamental wave.

(c) A mechanism different from induction that partly explains the effect that the
coherent structures in the outer part of the boundary layer have on the region close
the wall becomes obvious when we consider the instantaneous pressure field generated
by the Λ-vortex in the boundary layer. In figure 13, cuts through the pressure field in
the plane z = 0 mm and at the wall are shown at a stage where the Λ-vortex has two
fully developed Ω-vortices at its tip. Due to the low-pressure regions present within
the vortex core, and at the locations where very strong induction occurs, pressure
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gradients are also generated at the wall. According to Lighthill (1963), pressure
gradients along the wall will influence the production process of new vorticity at
the wall. Therefore, the evolution of the coherent structures in the outer part of
the boundary layer will directly influence the vorticity production at the wall. The
pressure gradients may not be as pronounced in the ensuing turbulent boundary layer
because of the huge number of structures in the flow, but for this stage of the flow
development they seem to be relevant.

(d ) Further downstream, the amplification process of background disturbances
becomes even more complex when the vortical structures and high-shear layers
generated in different disturbance periods start to interact. Starting at about x =
800 mm in figure 12(d ), the ring-like vortices of a given disturbance period catch
up with the structures generated one period before. The interaction of the ring-like
vortices with the high-shear layer generated by the tail of the preceding Λ-vortex close
to the wall, and with its legs, generates very strong shear that moves very quickly
towards the wall (x ≈ 810 mm in figure 12a). As an additional effect, the legs that
connect the accelerated ring-like vortices with the tip of the Λ-vortex, or with the
ring next to them, are strongly stretched and propel themselves towards the wall
where the already existing high-shear layer is intensified (compare x ≈ 810 mm in
figures 11a and 12a). Many new small vortical structures and high-shear layers come
into existence in the following development through these interactions, which can be
easily observed comparing figures 11 and 12. This conglomeration of new structures
might itself be very sensitive to background disturbances because of the complex
interactions that occur between them. Most likely, the non-periodic motion from the
upstream development as described in (a)–(c) above will be amplified and spread to
the sides of the peak plane in this environment.

This picture of the randomization process seems to be confirmed by the experimen-
tal data in figure 10. The inclined high-shear layer between the legs of the Λ-vortex
breaks down (increasing randomization) starting first at the tip of the Λ-vortex, and,
only shortly later, in the wall region, too. In this process, the strongest ∂U/∂y occurs
below the spikes close to the wall and not in the high-shear layer that appears as
a satellite on top of and between the Λ-vortex legs – the difference of the ∂U/∂y
shown here to Ωz as plotted in figure 12 from DNS data is only of the order of 10%.
Eventually, the regions of strong random velocity fluctuations in the layer closest
to the wall enlarge and merge. The near-wall peak in the u′rms profile typical of a
turbulent boundary layer is developing (see figure 6, x = 860 mm) and finally the
shape factor H12 approaches a value of about 1.54 (see figure 5). The turbulent value
of H12 ≈ 1.4 will finally be reached further downstream.

Nishioka (1994) has investigated the influence of non-periodic background dis-
turbances (i.e. disturbances that are part of the continuous spectrum) in spectral
space. These results show a selection of background disturbances which have a cer-
tain phase relation to the fundamental disturbance and its higher harmonics. As a
consequence, this leads to a coupling of the continuous-spectrum modes with the
formation of the spikes and the high-shear layer. Amplification of these disturb-
ances by a high-frequency instability of the high-shear layer will then lead to a
breakdown into hairpin vortices. In the present paper we have tried to show that
the breakdown process of the Λ-structure and the flow randomization process is
somewhat more complicated than a mere inflectional shear-layer instability to high-
frequency disturbances. Nevertheless, this spectral point of view of the breakdown
process is complementary to the structure-based view of the breakdown process as
presented in the present paper. Since it is clear that all Fourier modes that are
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Figure 13. (a) Vortex visualization from DNS data and (b, c) cuts through the instantaneous
pressure field. The undisturbed pressure level is 1.0 as y → ∞. The pressure field is dominated
by the presence of the vortical structure. Pressure gradients along the wall are generated that will
influence the vorticity production at the wall.

needed to represent a certain structure in space and time must be correlated, these
earlier findings are consistent with the present observations in that respect. From
our viewpoint the phase-coupled background disturbances manifest themselves as
displacements of flow structures with respect to each other from event to event
(compared to the periodic case). In addition to that, we can observe now that
these effects are not confined to the high-shear layer near the outer edge of the
boundary layer, but influence the shear near the wall in an unsteady manner. Appar-
ently this is the next step towards turbulence after the formation of hairpin (or Ω-)
eddies.
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7. Conclusions

In the experiment, the flow field was analysed with the help of phase-locked
ensemble-averaged hot-wire measurements. The spatial formation of the disturbance
structures in the Klebanoff-type transition was followed up to the development of
turbulence. The experimental results are compared with the results of a DNS. The
disturbance spectrum of the DNS was adjusted to match the disturbance spectrum of
the experiment as closely as possible. Good agreement was found for the development
of the normal oblique modes and the topological evolution of the vortex structures.
The DNS data are used to identify vortex structures and their interaction in order to
explain the amplification of non-periodic motions in the transition process that leads
from laminar to turbulent flow.

The first sign of randomness in the transition process was observed at a position
corresponding to the tip of the Λ-vortex – a Λ-shaped disturbance structure that typi-
cally appears in the transition process studied here. At this position, a ring-like vortex
structure that induces the spike signals in the velocity time traces is formed at slightly
different positions from period to period because of the small random background
perturbations always present under real conditions. These random fluctuations can be
identified as phase jitter and amplitude modulations of the spike signals in measure-
ments. The ring-like vortices strongly influence the near-wall structures by induction
and by generating pressure gradients along the wall. Thus, the initial non-periodic
motion of the ring-like vortices in the outer part of the boundary layer initiates
random fluctuations near the wall which are then strongly amplified close to the wall
where strong mean velocity gradients prevail. The mechanism of vortex stretching of
the ‘legs’ of the ring-like vortices, their motion towards the wall, and their interaction
with vortices of the Λ-structure generated one period earlier, intensifies the formation
of a very strong, near-wall high-shear layer below the spikes that quickly breaks down
due to the interaction with the structures above in the outer part of the boundary
layer. At further downstream positions, a rapid filling of the flow field with random
fluctuations towards the wall, and then in the spanwise direction, was observed that
finally leads to a quasi-random turbulent flow. The amplification of the random
disturbances is always connected with the large local velocity gradients generated by
the coherent motion within the boundary layer, and with the complex interaction of
the countless structures generated continuously during the transition process.
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